Monatshefte für Chemie Chemical Monthly Printed in Austria

Pyrazoles and Pyrazolo[4,3-*e*]pyrrolo[1,2*a*]pyrazines, I. Synthesis and Antimicrobial Activity

Abdel-Rahman Farghaly and Hussein El-Kashef*

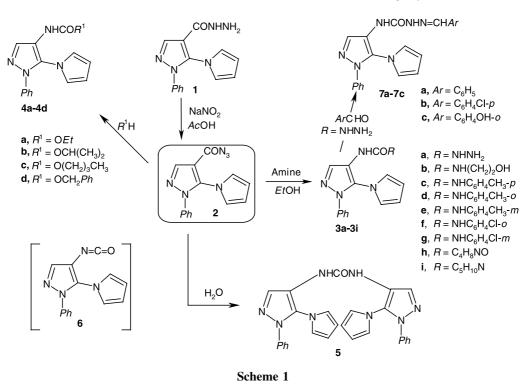
Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt

Received May 18, 2004; accepted (revised) June 16, 2004 Published online October 8, 2004 © Springer-Verlag 2004

Summary. The synthesis of the title compounds was achieved using 1-phenyl-5-(pyrrol-1-yl)-1*H*-pyrazole-3-carboxylic acid azide as starting material. The latter compound was allowed to react with alcohols and amines to afford the corresponding carbamates and urea derivatives. Alkaline hydrolysis of the carbamates gave the corresponding amine, which was acylated and/or aroylated to give amide derivatives. These and the urea derivatives were subjected to cyclodehydration to give the title compounds. Antibacterial and antifungal activities were observed for several derivatives.

Keywords. Pyrazoles; Pyrrolylpyrazoles; Pyrazolopyrazines; Pyrazolopyrrolopyrazines.

Introduction

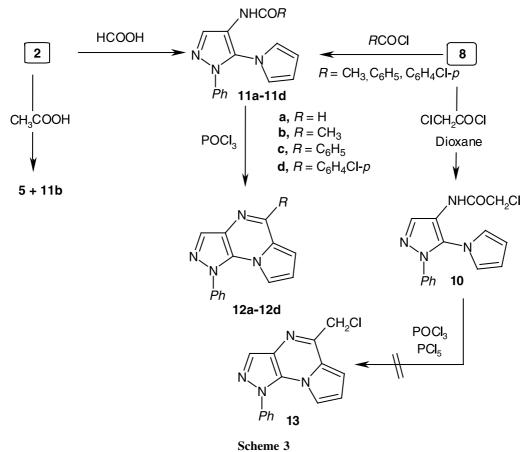

1-Phenyl-1*H*-pyrazolo[3,4-*b*]pyrazines have been reported to possess antiviral, antineoplastic, antifungal, and antiparasitic activities [1-4]. Also other compounds of related structure have been prepared for pharmacological evaluation [5]. Furthermore, some tricyclic systems containing the pyrazole moiety with a bridgehead nitrogen atom have been extensively studied owing to their interesting biological and pharmacological activities [6, 7]. In view of these findings and in continuation of our program directed towards the synthesis of new pyrazolopyrazines [3, 4] and other fused pyrazines [8–12] we report herein the synthesis and antimicrobial activities of some new pyrazolo[4,3-*e*]pyrrolo[1,2-*a*]pyrazines and related heterocycles.

Results and Discussion

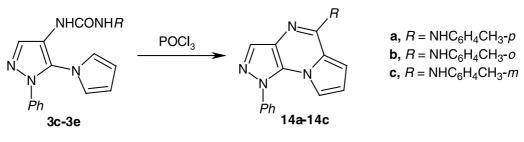
The synthesis of the acid azide 2 has been reported earlier [2, 13]. We have prepared the same azide by treating the carbohydrazide 1 with nitrous acid. Heating

^{*} Corresponding author. E-mail: elkashef15@hotmail.com

A.-R. Farghaly and H. El-Kashef



this azide in boiling benzene in the presence of aliphatic or aromatic amines gave the corresponding urea derivatives 3b-3i. When hydrazine hydrate was used in the former reaction the semicarbazide derivative 3a was obtained. However, when 2 was allowed to decompose in refluxing alcohols the corresponding carbamates 4a-4d resulted. The product of its decomposition in boiling water was identified as the symmetrical urea 5 (Scheme 1). It is obvious that the formation of the abovementioned compounds 3-5 occurred *via* the isocyanate key intermediate 6, which was formed *in situ* by *Curtius* rearrangement of the acid azide 2. Several semicarbazones 7a-7c were obtained from the reaction of the semicarbazide 3a with aromatic aldehydes. On the other hand, the alkaline hydrolysis of the carbamates, *e.g.* 4a and 4d, led to the amine 8, which gave the corresponding anils 9a-9ethrough its interaction with aromatic aldehydes (Scheme 2).


The formamido derivative **11a** was obtained by reaction of **2** with formic acid (Scheme 3). It is worthy to note that when **2** was heated in boiling acetic acid, two

Scheme 2

products were formed; the expected acetamido derivative **11b** and **5**. The formation of the latter resulted from a trace of water present in acetic acid. Alternatively, **11b**, **11c**, and **11d** were obtained by the reaction of acyl- or aroylchloride with **8** in pyridine at room temperature. The chloroacetyl derivative **10** was obtained upon treating **8** with chloroacetyl chloride in boiling dioxane. The target pyrazolo [4,3-e]pyrrolo[1,2-a]pyrazines **12a–12d** were obtained upon cyclodehydration of the **11a–11d** in boiling POCl₃. However, all attempts to ring close **10** into **13** using phosphoryl chloride alone or admixed with phosphorus trichoride were unsuccessful. Moreover, other pyrazine derivatives **14a–14c** (Scheme 4) bearing substituted

Scheme 4

anilino groups in position 5 as potential adenosine receptor antagonist candidates could be obtained by cyclodehydration reaction of 3c-3e in boiling POCl₃.

Antibacterial and Antifungal Activities

Some of the prepared compounds were screened for the *in-vitro* antibacterial activity against four species of bacteria: *Staphylococcus aureus*, *Escherichia coli*, *Bacillus cereus*, and *Pseudomonas aeruginosa* as well as eight fungi species: *Penicillium chrysogenum* AUMC 530-15, *Aspergillus* flavus AUMC 164-5, *Aspergillus fumigatus* AUMC 170-3, *Aspergillus* ochraceus AUMC 230-2, *Aspergillus niger* AUMC 210-1, *Curvulana lunata* AUMC 2310-1, *Fusarium solani* AUMC 2690-6, and *Trichothecium roseum* AUMC 7410-2.

In the series 3a-3i, only the 3-chloro derivative 3g was found to be active. It showed a strong activity (+++) against *B. cereus* and (++) *S. aureus*, a moderate activity (+) against *Escherichia coli* whereas all the remainder of this series showed no activity against both bacteria and fungi. On the other hand, 7d exhibited a moderate to weak activity against four species of fungi; *P. chrysogenum*, *A. niger*, *C. lunala*, and *F. solani* with inhibition zones of 12, 8, 17, 9 mm. Also it showed activity (++) against the *Gram*-negative bacterium *B. cereus*.

Furthermore, the compound that showed a wide spectrum of activity against bacteria and fungi was found to be the methyl pyrazine derivative **12a**. Except against *T. roseum*, **12a** showed a moderate to weak activity against all the other tested fungal species *P. chrysogenum*, *A.* falvus, *A. fumigatus*, *A.* ochracus, *A. niger*, *C. lunala*, and *F. solani*, with inhibition zones 15, 8, 7, 12, 8, 12, 7 mm. Compound **12b** showed a strong activity (++) against *E. coli* and *B. cereus* and a moderate activity (+) against *S. aureus*. When the 5-methyl group of **12b** was substituted by aryls, no activity was observed.

Experimental

All melting points were determined on a *Kofler* melting point apparatus. IR spectra were recorded on a Pye Unicam SP3-100 spectrophotometer using KBr wafer technique. ¹H NMR spectra were recorded on a Varian EM 390, 90 MHz spectrometer (*TMS* as internal reference, δ values in ppm). Mass spectra were obtained with a Shimadzu QP5050 DI 50 spectrometer. Elemental analyses were carried out using a Perkin-Elmer 240 C Micro analyzer; the results were in satisfactory agreement with the calculated values. Starting materials were commercially available. Solvents were distilled and dried before use. 1-Phenyl-5-(pyrrol-1-yl)-1*H*-pyrazole-4-carbohydrazide (1) was prepared as described earlier [2].

1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazole-4-carboazide (2) [2]

To a suspension of 5.30 g of **1** (20 mmol) in 50 cm³ of glacial acetic acid, a cold solution of 3.30 g of NaNO₂ (10 cm³, 33%) was added dropwise with stirring at rt. After completion of the addition, stirring was continued for 1 h. The solid precipitate obtained was filtered off, washed with H₂O, dried by suction, and used in the next reaction without purification. Yield 5.22 g (95%) of yellow powder of **2**; mp (decomp) 102–104°C [2]; IR (KBr): $\bar{\nu} = 2120$ (CON₃), 1680 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 6.25$ (m, H3,4_{pyrrole}), 6.65 (m, H2,5_{pyrrole}), 7.10 (m, 2H_{arom}), 7.27 (m, 3H_{arom}), 8.10 (s, 1H_{pyrazole}) ppm.

Pyrazoles and Pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazines

Reaction of **2** *with Hydrazine Hydrate and Amines (General Procedure)*

A mixture of 0.278 g of 2 (1 mmol) and hydrazine hydrate or the appropriate amine (1 mmol) in 10 cm³ of dry benzene was heated under reflux for 1 h. Then the reaction mixture was concentrated and the solid product formed was filtered off and recrystallized from the solvent indicated below to give **3a** or **3b**-**3i**.

4-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)semicarbazide (3a, C₁₄H₁₄N₆O)

Buff crystals; mp 194–196°C (ethanol); yield 0.24 g (85%); IR (KBr): $\bar{\nu} = 3300$, 3100 (NH and NHNH₂), 1660 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.63$ (s, br, NH₂), 6.40 (m, H3,4_{pyrrole}), 6.60 (s, NH), 6.73 (m, H2,5_{pyrrole}), 7.10 (m, 2H_{arom}), 7.23 (m, 3H_{arom}), 8.20 (s, 1H_{pyrazole}) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(2-hydroxyethyl)urea (3b, C₁₆H₁₇N₅O₂)

White plates; mp 142–144°C (ethanol); yield 0.25 g (80%); IR (KBr): $\bar{\nu} = 3420-3100$ (OH and NH), 1650 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.57$ (s, NH), 3.53 (m, 2CH₂), 5.67 (s, OH), 6.37 (m, H3,4_{pyrrole}), 6.72 (m, H2,5_{pyrrole}), 7.13 (m, 2H_{arom}), 7.30 (m, 3H_{arom}), 8.17 (s, 1H_{pyrazole}), 8.32 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(p-tolyl)urea (3c, C₂₁H₁₉N₅O)

White crystals; mp 215–217°C (ethanol); yield 0.29 g (81%); IR (KBr): $\bar{\nu} = 3300$ (NH), 1650 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.23$ (s, CH₃), 6.30 (m, H3,4_{pyrrole}), 6.88 (m, H2,5_{pyrrole}), 7.03 (m, 4H_{arom}), 7.27 (m, 5H_{arom}), 7.80 (s, NH), 8.11 (s, 1H_{pyrazole}), 8.67 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(o-tolyl)urea (3d, C₂₁H₁₉N₅O)

Yellowish buff needles; mp 225–227°C (ethanol); yield 0.25 g (70%); IR (KBr): $\bar{\nu} = 3300$ (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.22$ (s, CH₃), 6.33 (m, H3,4_{pyrrole}), 6.91 (m, H2,5_{pyrrole}), 7.07 (m, 4H_{aron}), 7.30 (m, 5H_{aron}), 7.80 (s, NH), 8.17 (s, 1H_{pyrazole}), 8.33 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(m-tolyl)urea (3e, C₂₁H₁₉N₅O)

White crystals; mp 198–200°C (ethanol:H₂O = 3:1); yield 0.27 g (76%); IR (KBr): $\bar{\nu}$ = 3320 and 3250 (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): δ = 2.28 (s, CH₃), 6.30 (m, H3,4_{pyrrole}), 6.88 (m, H2,5_{pyrrole}), 7.17 (m, 9H_{aron}), 7.87 (s, NH), 8.17 (s, 1H_{pyrazole}), 8.80 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(2-chlorophenyl)urea (**3f**, C₂₀H₁₆N₅OCl)

Yellowish buff crystals; mp 214–116°C (ethanol); yield 0.30 g (80%); IR (KBr): $\bar{\nu} = 3350$ and 3280 (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.30$ (m, H3,4_{pyrrole}), 6.90 (m, H2,5_{pyrrole}), 7.03 (m, 4H_{arom}), 7.33 (m, 5H_{arom}), 8.20 (s, 1H_{pyrazole}), 8.60 (s, NH), 8.77 (s, NH) ppm.

$1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(3-chlorophenyl)urea~(\textbf{3g},~\textbf{C}_{20}\textbf{H}_{16}\textbf{N}_{5}\textbf{OCl})$

Buff fluffy crystals; mp 105–108°C (ethanol); yield 0.32 g (85%); IR (KBr): $\bar{\nu} = 3350$ and 3280 (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.27$ (m, H3,4_{pyrrole}), 6.86 (m, H2,5_{pyrrole}), 6.96 (m, 4H_{arom}), 7.23 (m, 5H_{arom}), 7.93 (s, NH), 8.07 (s, 1H_{pyrazole}), 9.00 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(morpholin-4-yl)urea (3h, C₁₈H₁₉N₅O₂)

Buff crystals; mp 150–152°C (ethanol); yield 0.26 g (77%); IR (KBr): $\bar{\nu} = 3450$ (NH), 1620 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.47$ (m, 4CH₂), 6.30 (m, H3,4_{pyrrole}), 6.67 (m, H2,5_{pyrrole}), 7.13 (m, 2H_{arom}), 7.33 (m, 3H_{arom}), 7.87 (s, 1H_{pyrazole}), 9.30 (s, NH) ppm.

1-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-3-(piperidin-1-yl)urea (3i, C19H21N5O)

White crystals; mp 142–144°C (ethanol); yield 0.30 g (90%); IR (KBr): $\bar{\nu} = 3450$ (NH), 1620 (C=O) cm⁻¹. ¹H NMR (CDCl₃): $\delta = 1.40$ (m, 3CH₂), 3.37 (m, 2CH₂), 6.27 (m, H3,4_{pyrrole}), 6.67 (m, H2,5_{pyrrole}), 7.17 (m, 2H_{arom}), 7.33 (m, 3H_{arom}), 7.87 (s, 1H_{pyrazole}), 9.28 (s, NH) ppm.

Alkyl N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)carbamates (General Procedure)

A solution of 0.556 g of 2 (2 mmol) in 5 cm^3 of ethanol, 2-propanol, *n*-butanol, or benzyl alcohol was heated under reflux for 2 h. The reaction mixture was concentrated and allowed to cool. The residue obtained was triturated with ethanol. The solid product formed was filtered off and recrystallized from the same alcohol used to give 4a-4d.

Ethyl N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)carbamate (4a)

Fluffy buff crystals; mp 126–128°C (ethanol, Ref. [2] 134–135°C); yield 0.55 g (93%, Ref. [2] 85%); IR (KBr): $\bar{\nu} = 3250$ (NH), 1690 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.26$ (t, J = 7.5 Hz, CH₂CH₃), 4.16 (q, J = 7.5 Hz, CH₂CH₃), 6.23 (s, NH), 6.30 (m, H3,4_{pyrrole}), 6.63 (m, H2,5_{pyrrole}), 7.11 (m, 2H_{arom}), 7.23 (m, 3H_{arom}), 8.03 (s, 1H_{pyrazole}) ppm.

Prop-2-yl N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)carbamate (**4b**, C₁₇H₁₈N₄O₂)

Buff crystals; mp 120–122°C (isopropanol); yield 0.40 g (65%); IR (KBr): $\bar{\nu} = 3250$ (NH), 1680 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.27$ (m, 2CH₃), 4.87 (m, COOC<u>H</u>), 6.03 (s, NH), 6.27 (m, H3,4_{pyrrole}), 6.60 (m, H2,5_{pyrrole}), 6.97 (m, 2H_{arom}), 7.17 (m, 3H_{arom}), 8.00 (s, 1H_{pyrazole}) ppm.

Butyl N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)carbamate (4c, C₁₈H₂₀N₄O₂)

Buff needles; mp 94–96°C (*n*-butanol); yield 0.50 g (77%); IR (KBr): $\bar{\nu} = 3280$ (NH), 1680 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.97$ (t, J = 7.0 Hz, CH₃), 1.45 (m, 2CH₂), 4.12 (t, J = 6.9 Hz, COOC<u>H₂</u>), 6.17 (s, NH), 6.30 (m, H3,4_{pyrrole}), 6.63 (m, H2,5_{pyrrole}), 7.03 (m, 2H_{arom}), 7.20 (m, 3H_{arom}), 8.03 (s, 1H_{pyrazole}) ppm.

Benzyl N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)carbamate (**4d**, C₂₁H₁₈N₄O₂)

Buff crystals; mp 133–135°C (ethanol); yield 0.54 g (75%); IR (KBr): $\bar{\nu} = 3280$ (NH), 1700 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 5.13$ (m, CH₂), 6.17 (s, NH), 6.27 (m, H3,4_{pyrrole}), 6.57 (m, 2H, H2,5_{pyrrole}), 7.00 (m, 2H_{arom}), 7.16 (m, 3H_{arom}), 7.30 (m, 5H_{arom}), 8.03 (s, 1H_{pyrazole}) ppm.

1,3-Bis-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)urea (5, C₂₇H₂₂N₈O)

A suspension of 0.55 g of **2** (2 mmol) in 20 cm³ of H₂O was refluxed for 3 h. After cooling, the product formed was filtered off and recrystallized from ethanol:dioxane (1:1) to afford 0.40 g (84%) of **5** as buff crystals; mp 255–257°C; IR (KBr): $\bar{\nu}$ = 3380, 3100 (NH), 1690 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ = 6.30 (m, H3,4_{pyrrole}), 6.87 (m, H2,5_{pyrrole}), 7.03 (m, 2H_{arom}), 7.30 (m, 3H_{arom}), 8.13 (s,

Pyrazoles and Pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazines

 $1H_{pyrazole}$), 8.22 (s, 1H, NH) ppm; MS: m/z (%) = 474 [M⁺] (96), 369 (56), 301 (36), 224 (21), 169 (51), 128 (28), 111 (25), 104 (100), 103 (57), 79 (40), 67 (30), 62 (19), 51 (42).

1-Arylidene-4-(1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)semicarbazide (General Procedure)

A mixture of 0.282 g of **3a** (1 mmol) and the appropriate aromatic aldehyde (1 mmol) in 10 cm^3 of absolute ethanol was heated under reflux for 4 h. The reaction mixture was concentrated and left to cool. After cooling, the solid product formed was filtered off and recrystallized from the solvent indicated to give **7a**–**7c**.

1-Benzylidene-4-(1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)semicarbazide (7a, C₂₁H₁₈N₆O)

Yellow needles; mp 223–225°C (ethanol); yield 0.28 g (75%); IR (KBr): $\bar{\nu} = 3350$ (NH), 3250 (NH), 1650 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.17$ (m, H3,4_{pyrrole}), 6.83 (m, H2,5_{pyrrole}), 7.40 (m, 10H_{aron}), 8.30 (s, NH), 8.37 (s, 2H_{pyrazole} + N=CH), 11.63 (s, NH) ppm.

1-(4-Chlorobenzylidene)-4-(1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)semicarbazide (**7b**, C₂₁H₁₇N₆OCl)

Buff crystals; mp 218–220°C (methanol); yield 0.34 g (84%); IR (KBr): $\bar{\nu} = 3300$ (NH), 3180 (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.16$ (m, H3,4_{pyrrole}), 6.86 (m, H2,5_{pyrrole}), 7.52 (m, 9H_{arom}), 8.30 (s, NH), 8.34 (s, 1H_{pyrazole}), 8.72 (s, N=CH), 11.63 (s, NH) ppm.

$\label{eq:loss} \begin{array}{l} 1-(2-Hydroxybenzylidene)-4-(1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)semicarbazide \\ \textbf{(7c, } C_{21}H_{17}N_6O_2) \end{array}$

White crystals; mp 213–215°C (ethanol); yield 0.35 g (91%); IR (KBr): $\bar{\nu} = 3300$ (NH), 3100 (NH), 1670 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.05$ (m, H3,4_{pyrrole}), 6.90 (m, H2,5_{pyrrole} + 2H_{arom}), 7.20 (m, 2H_{arom}), 7.38 (m, 5H_{arom}), 8.32 (s, NH), 8.38 (s, 1H_{pyrazole}), 8.53 (s, N=CH), 11.03 (s, OH), 11.66 (s, NH) ppm.

1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (8, C₁₃H₁₂N₄)

A mixture of **4a** or **4d** (1 mmol) and 15 cm³ of aqueous ethanolic NaOH (20%) was heated under reflux for 48 h. The solvent was evaporated and the residue was triturated with H₂O. The solid product obtained was filtered off and recrystallized from ethanol to afford 0.17 g (75%) or 0.204 g (90%) of **8** as yellow crystals; mp 140–142°C (Ref. [2] 144–145°C).

N-Arylidene-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (General Procedure)

A mixture of 0.224 g of **8** (1 mmol) and the appropriate aromatic aldehyde (1 mmol) in 10 cm^3 of absolute ethanol was heated under reflux in presence of two drops of piperidine for 3 h, then the reaction mixture was concentrated. After cooling, the solid product formed was collected by filtration and recrystallized from the proper solvent to give the corresponding derivatives **9a–9e**.

N-Benzylidene-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (9a, C₂₀H₁₆N₄)

Pale yellow crystals; mp 171–173°C (ethanol); yield 0.17 g (55%); IR (KBr): $\bar{\nu} = 1610$ (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.27$ (m, H3,4_{pyrrole}), 6.85 (m, H2,5_{pyrrole}), 7.13 (m, 3H_{arom}), 7.40 (m, 5H_{arom}), 7.73 (m, 2H_{arom}), 8.23 (s, 1H_{pyrazole}), 8.77 (s, N=CH) ppm.

N-(4-Chlorobenzylidene)-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (9b, C₂₀H₁₅N₄Cl)

Yellowish white crystals; mp 176–178°C (benzene:dioxane = 2:1); yield 0.21 g (61%); IR (KBr): $\bar{\nu} = 1620$ (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.27$ (m, H3,4_{pyrrole}), 6.90 (m, H2,5_{pyrrole}), 7.17 (m, 2H_{arom}), 7.40 (m, 3H_{arom}), 7.56 (d, J = 8.9 Hz, 2H_{arom}), 7.83 (d, J = 8.9 Hz, 2H_{arom}), 8.26 (s, 1H_{pyrazole}), 8.83 (s, N=CH) ppm.

N-(4-Nitrobenzylidene)-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (9c, C₂₀H₁₅N₄Cl)

Yellow crystals; mp 192–194°C (ethanol); yield 0.12 g (34%); IR (KBr): $\bar{\nu} = 1610$ (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.30$ (m, H3,4_{pyrrole}), 6.90 (m, H2,5_{pyrrole}), 7.16 (m, 2H_{arom}), 7.43 (m, 3H_{arom}), 8.03 (d, J = 9 Hz, 2H_{arom}), 8.35 (s, 1H_{pyrazole}), 8.36 (d, J = 9 Hz, 2H_{arom}), 9.01 (s, N=CH) ppm.

$N-[4-(Dimethylamino)benzylidene]-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (9d, C_{22}H_{21}N_5)$

Yellow needles; mp 182–184°C (ethanol); yield 0.153 g (43%); IR (KBr): $\bar{\nu} = 1600$ (C=N) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 3.03$ (s, 2CH₃), 6.30 (m, H3,4_{pyrrole}), 6.67 (d, 2H_{arom}), 6.73 (m, H2,5_{pyrrole}), 7.23 (m, 5H_{arom}), 7.67 (m, 2H_{arom}), 7.87 (s, 1H_{pyrazole}), 8.36 (s, N=CH) ppm.

N-(4-Methoxybenzylidene)-1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-ylamine (9e, C₂₁H₁₈N₄O)

Yellow crystals; mp 147–150°C (benzene:ethanol = 1:1); yield 0.25 g (73%); IR (KBr): $\bar{\nu}$ = 1610 (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): δ = 3.83 (s, CH₃), 6.30 (m, H3,4_{pyrrole}), 6.76 (m, H2,5_{pyrrole}), 6.91 (d, 2H_{arom}), 7.25 (m, 5H_{arom}), 7.73 (m, 2H_{arom}), 7.90 (s, 1H_{pyrazole}), 8.43 (s, N=CH) ppm.

2-Chloro-N-(1-phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)acetamide (10, C₁₅H₁₃N₄OCl)

To a solution of 0.44 g of **8** (2 mmol) in 10 cm³ of dry dioxane, 0.225 g of chloroacetyl chloride (2 mmol) were added dropwise, and the reaction mixture was refluxed for 4 h. After cooling, the reaction mixture was poured into ice-H₂O and the solid product formed was collected by filtration and recrystallized from ethanol to give 0.13 g (22%) of **10** as bright white flakes; mp 180–182°C; IR (KBr): $\bar{\nu} = 3250$ (NH), 1650 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 4.26$ (s, CH₂Cl), 6.30 (m, H3,4_{pyrrole}), 6.80 (m, H2,5_{pyrrole}), 7.00 (m, 2H_{arom}), 7.30 (m, 3H_{arom}), 8.06 (s, 1H_{pyrazole}), 9.80 (s, NH) ppm.

N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)formamide (**11a**, C₁₄H₁₂N₄O)

A mixture of 0.56 g of **2** (2 mmol) and 5 cm³ of formic acid was heated under reflux for 3 h. After cooling the reaction mixture was poured into ice-H₂O, the solid precipitate formed was collected by filtration and recrystallized from ethanol into buff crystals. Yield 0.38 g (76%, Ref. [2] 96%); mp 200–202°C (Ref. [2] 209–210°C); IR (KBr): $\bar{\nu} = 3200$ (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.28$ (m, H3,4_{pyrrole}), 6.86 (m, H2,5_{pyrrole}), 7.08 (m, 2H_{arom}), 7.33 (m, 3H_{arom}), 8.20 (s, 2H_{pyracole} + C<u>H</u>O), 9.80 (s, NH) ppm; MS: m/z (%) = 253 [M⁺+1] (31), 252 [M⁺] (100), 235 (7), 224 (30), 223 (20), 196 (22), 170 (11), 169 (30), 104 (12), 77 (46), 68 (11), 51 (12).

N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)acetamide (**11b**, C₁₅H₁₄N₄O)

Method A: A mixture of 0.44 g of **8** (2 mmol) and 0.16 g of acetyl chloride (2 mmol) in 10 cm³ of pyridine was stirred at rt for 2 h. Then, the reaction mixture was poured into ice-H₂O and the solid

Pyrazoles and Pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazines

product formed was filtered off and recrystallized from ethanol to give 0.34 g (79%) of **11b** as bright white flakes; mp 202–204°C; IR (KBr): $\bar{\nu} = 3200$ (NH), 1640 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.00$ (s, CH₃), 6.23 (m, H3,4_{pyrrole}), 6.78 (m, H2,5_{pyrrole}), 7.03 (m, 2H_{arom}), 7.30 (m, 3H_{arom}), 8.03 (s, 1H_{pyrazole}), 9.40 (s, NH) ppm.

Method B: A mixture of 0.50 g of **2** (1.8 mmol) and 10 cm^3 of acetic acid in presence of 0.5 g of fused NaOAc was heated under reflux for 3 h. After cooling the reaction mixture was poured into ice-H₂O, the solid product formed was filtered off and recrystallized from ethanol to afford 0.13 g of **11b** (27%).

N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)benzamide (11c, C₂₀H₁₆N₄O)

To a well stirred cooled suspension of 0.44 g of **8** (2 mmol) in 10 cm³ of pyridine, 0.28 g of benzoyl chloride (2 mmol) were added dropwise with stirring. The reaction mixture was stirred at rt for 2 h and the solid precipitate obtained was filtered off and recrystallized from ethanol to give 0.50 g (76%) of **11c** as white crystals; mp 128–130°C; IR (KBr): $\bar{\nu} = 3220$ (NH), 1640 (C=O) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 6.23$ (m, H3,4_{pyrrole}), 6.70 (m, H2,5_{pyrrole}), 7.22 (m, 5H_{arom}), 7.46 (m, 3H_{arom}), 7.80 (m, 2H_{arom}), 8.41 (s, 1H_{pyrazole}), 9.96 (s, NH) ppm; MS: m/z (%) = 328 [M⁺] (37), 224 (10), 223 (11), 222 (9), 195 (10), 152 (12), 132 (9), 106 (12), 105 (100), 104 (12), 77 (52), 75 (11), 67 (18), 51 (15), 50 (10).

N-(1-Phenyl-5-(pyrrol-1-yl)-1H-pyrazol-4-yl)-4-chlorobenzamide (11d, C₂₀H₁₅N₄OCl)

A mixture of 0.44 g of **8** (2 mmol) and 0.35 g of 4-chlorobenzoyl chloride (2 mmol) in 10 cm³ of pyridine was stirred at rt for 2 h. The reaction mixture was then poured into ice-H₂O and the solid product formed was collected by filtration and recrystallized from ethanol to give 0.72 g (99%) of **11d** as fluffy white crystals; mp 172–174°C; IR (KBr): $\bar{\nu} = 3320$ (NH), 1632 (C=O), 1590 (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.21$ (m, H3,4_{pyrrole}), 6.81 (m, H2,5_{pyrrole}), 7.02 (m, 2H_{arom}), 7.32 (m, 3H_{arom}), 7.56 (d, J = 8.52 Hz, 2H_{arom}), 7.87 (d, J = 8.52 Hz, 2H_{arom}), 7.99 (s, 1H_{pyrazole}), 9.98 (s, NH) ppm; MS: m/z (%) = 362 [M⁺] (100), 345 (23), 223 (84), 169 (40), 141 (56), 139 (100), 113 (16), 111 (47), 103 (12), 77 (52), 46 (10), 45 (23).

1-Phenyl-5-substitued-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazines (General Procedure)

A mixture of 11a-11d (1 mmol) in 5 cm³ of phosphoryl chloride was heated under gentle reflux for 3 h. After cooling the reaction mixture was poured into ice-H₂O and neutralized with NaOH solution (20%). The solid precipitate formed was collected by filtration and recrystallized from the proper solvent.

1-Phenyl-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (12a)

This compound was prepared according to the general procedure and the analytical data are in accordance with that of the reported procedure [2].

1-Phenyl-5-methyl-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (12b, C₁₅H₁₂N₄)

Buff needles; mp 120–122°C (petroleum ether (40–60): benzene = 1:1); yield: 0.15 g (60%); IR (KBr): $\bar{\nu} = 1600$ (C=N) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.37$ (s, CH₃), 6.67 (m, 1H_{pyrrole}), 6.90 (m, 1H_{pyrrole}), 6.96 (m, 1H_{pyrrole}), 7.53 (m, 5H_{arom}), 8.10 (s, 1H_{pyracole}) ppm; MS: m/z (%) = 249 [M⁺+1] (25), 248 [M⁺] (100), 247 [M⁺-1] (23), 220 (11), 144 (7), 118 (7), 92 (10), 77 (18), 51 (15).

1,5-Diphenyl-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (**12c**, C₂₀H₁₄N₄)

Yellowish brown crystals; mp 175–177°C (ethanol); yield 0.10 g (32%); IR (KBr): $\bar{\nu} = 1600$ (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.90$ (m, 1H_{pyrrole}), 7.03 (m, 2H_{pyrrole}), 7.53 (m, 3H_{arom}), 7.67 (m, 5H_{arom}), 7.90 (m, 2H_{arom}), 8.37 (s, 1H_{pyrazole}) ppm; MS: m/z (%) = 311 [M⁺ +1] (45), 310 [M⁺] (100), 309 [M⁺-1] (33), 283 (5), 282 (11), 188 (17), 154 (13), 127 (5), 77 (20), 51 (11).

1-Phenyl-5-(4-chlorophenyl)-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (**12d**, C₂₀H₁₃N₄Cl)

White crystals; mp 187–189°C (ethanol); yield 0.34 g (99%); IR (KBr): $\bar{\nu} = 1592$ (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 6.90$ (m, 1H_{pyrrole}), 7.01 (m, 1H_{pyrrole}), 7.07 (m, 1H_{pyrrole}), 7.62 (d, J = 8.52 Hz, 2H_{arom}), 7.69 (m, 3H_{arom}), 7.71 (m, 2H_{arom}), 7.94 (d, J = 8.52 Hz, 2H_{arom}), 8.39 (s, 1H_{pyrracle}) ppm; MS: m/z (%) = 343 [M⁺ -1] (100), 342 (10), 316 (76), 307 (37), 290 (27), 280 (38), 178 (87), 171 (29), 76 (66), 51 (35).

1-Phenyl-5-substitued-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (General Procedure)

A mixture of 3c-3e (1 mmol) in 5 cm³ of phosphoryl chloride was heated under reflux for 2 h. After cooling the reaction mixture was poured into ice-H₂O and neutralized with NH₄OH. The solid white precipitate formed was collected by filtration and recrystallized from the proper solvent to give the corresponding compounds **14a–14c**.

1-Phenyl-5-(p-tolylamino)-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (14a, C₂₁H₁₇N₅)

White crystals; mp 220–222°C (ethanol); yield: 0.30 g (88%); IR (KBr): $\bar{\nu} = 3425$ (NH), 1629 (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.36$ (s, CH₃), 6.84 (m, 1H_{pyrrole}), 6.98 (m, 1H_{pyrrole}), 7.41 (d, J = 8.32 Hz, 2H_{*p*-tolyl}), 7.64 (d, J = 8.32 Hz, 2H_{*p*-tolyl}), 7.74 (m, 5H_{arom}), 7.98 (m, 1H_{pyrrole}), 8.01 (s, 1H_{pyrrale}), 10.82 (s, NH, exchangeable) ppm.

1-Phenyl-5-(o-tolylamino)-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (14b, C₂₁H₁₇N₅)

Colorless needles; mp 212–215°C (ethanol); yield 0.32 g (94%); IR (KBr): $\bar{\nu} = 3340$ (NH), 1595 (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.23$ (s, CH₃), 6.71 (m, 1H_{pyrrole}), 6.86 (m, 1H_{pyrrole}), 7.13 (m, 1H_{pyrrole}), 7.26 (m, 4H_{o-tolyl}), 7.54 (m, 3H_{arom}), 7.60 (m, 2H_{arom}), 7.79 (s, 1H_{pyrazole}), 8.53 (s, NH, exchangeable) ppm.

1-Phenyl-5-(m-tolylamino)-1H-pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazine (14c, C₂₁H₁₇N₅)

White crystals; mp 222–224°C (ethanol); yield 0.28 g (82%); IR (KBr): $\bar{\nu} = 3420$ (NH), 1630 (C=N) cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.40$ (s, CH₃), 6.80 (m, 1H_{pyrrole}), 6.94 (m, 1H_{pyrrole}), 7.03 (m, 1H_{pyrrole}), 7.29 (m, 4H_{m-tolyl}), 7.65 (m, 5H_{arom}), 7.98 (s, 1H_{pyrrole}), 10.12 (s, NH, exchangeable) ppm.

Antibacterial and Antifungal Assay

The tested compounds and the control antibiotic were dissolved in *DMSO* as stock solutions, and dilutions were made using sterile distilled H₂O. The *in vitro* anti-microbial activities of the tested compounds were carried out using the filter paper disc diffusion method [14]. Filter paper discs (5 mm) saturated with the solution of each tested compound ($20 \text{ mg}/2 \text{ cm}^3 DMSO$) were placed on the surface of the media (Nutrient agar for bacteria and Dextrose Agar for the fungi). The inhibition zones were

measured in mm at the end of an incubation period of 48 h at 37° C for the bacteria and at 28°C for the fungi. Discs saturated with *DMSO* were used as control; Clotrimazole was used as an anti-fungal and Cloxacillin as an anti-bacterial reference. Both control (+++) in the test (inhibition zones >25 mm).

References

- Suzuki S, Suzuki K, Honda H (1983) German Offen DE 3, 237: 243; Chem Abstr (1984) 100: 68319z
- [2] Světlik J (1984) Heterocycles 22: 2513
- [3] El-Emary TI, Kamal El-Dean AM, El-Kashef HS (1998) Farmaco 53: 383
- [4] El-Kashef HS, El-Emary TI, Gasquet M, Timon-David P, Maldonado J, Vanelle P (2000) Pharmazie 55: 572
- [5] Baraldi PG, Simoni D, Periotto V, Manfredini S, Guarneri M (1984) Synthesis 2: 148
- [6] Stefancich G, Corelli F, Massa S, Silvestri R, Di Santo R (1987) J Heterocycl Chem 24: 1199
- [7] Massa S, Stefancich G, Artico M, Corelli F, Ortenzi G (1985) Heterocycles 23:1417
- [8] De Sévricourt MC, El-Kashef H, Rault S, Robba M (1981) Synthesis 9: 710
- [9] El-Kashef H, Rault S, Lancelot JC, Robba M (1986) J Heterocycl Chem 23: 161
- [10] Radwan SM, Abbady MS, El-Kashef HS (1994) Phosphor Sulfur Silicon 89: 193
- [11] El-Kashef HS, Kamal El-Dean AM, Geies AA, Lancelot JC, Dallemagne P, Rault S (2000) J Heterocycl Chem 37: 1521
- Bakhite EA, Geies AA, Kamal El-Dean AM, El-Kashef HS (1995) Phosphor Sulfur Silicon 104: 143
- [13] Kopp M, Lancelot J-C, Dallemagne P, Rault S (2001) J Heterocyclic Chem 38: 1045
- [14] Wayne (1997) Performance Standards for Antimicrobial Disc Susceptibility Tests, 6th ed., Approved Standard, NCCLS, Document M2-A6, 17(1). National Committee for Clinical Laboratory Standards, Pennsylvania